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Abstract 

The purpose of this paper is to extend von Davier, Holland, and Thayer’s (2004b) framework of 

kernel equating so that it can incorporate raw data and traditional equipercentile equating 

methods. One result of this more general framework is that previous equating methodology 

research can be viewed more comprehensively. Another result is that the standard error of 

equated score difference (SEED) has a wider application than originally proposed. The methods 

described in this paper are empirically evaluated in an accompanying simulation study (Moses & 

Holland, 2007). 
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Introduction 

Organizing frameworks for equating methodologies can be helpful for revealing 

relationships among studies of seemingly different scope as well as for generating new equating 

methodologies. For example, von Davier, Holland, and Thayer’s (2004b) recent framework 

related chained and post-stratification/frequency estimation equating approaches in terms of a 

design function. This framework provided a useful way to reconsider the comparisons of chained 

and post-stratification methods that focused on equated score differences (Holland, von Davier, 

Sinharay, & Han, 2006; Livingston, 2004; Livingston, Dorans, & Wright, 1990; MacCann, 1990; 

von Davier, Holland, & Thayer, 2004a; Wang, Lee, Brennan, & Kolen, 2006) and on theoretical 

variability estimates (Liou & Cheng, 1995). In addition, a significance test for chained and post-

stratification equated score differences was a straightforward development produced within the 

von Davier et al. framework. 

The purpose of this paper is to add generality to von Davier et al.’s (2004b) framework of 

equating. The original framework focused on data that are pre-smoothed using loglinear models. 

This paper describes how raw data can be utilized throughout the steps of the original framework, 

promoting a broader consideration of the impact of smoothing on equating bias and empirical 

variability (Fairbank, 1987; Hanson, 1991; Hanson, Zeng, & Colton, 1994; Livingston, 1993b; 

Skaggs, 2004 ) and on theoretical standard error estimates (Liou & Cheng, 1995; Liou, Cheng, & 

Johnson, 1997). While the original framework focused on kernel equating, this paper shows how 

the traditional equipercentile methods can be incorporated, promoting a reconsideration of 

comparative evaluations of continuization methods (Grant, Zhang, Damiano, & Lonstein, 2006; 

Liou et al., 1997; Liu & Low, 2006; Livingston, 1993a). The result of adding generality to the 

original framework is that the tools developed in von Davier et al. for significance tests of 

equating function differences can be applied to raw data and to traditional equipercentile 

methodologies. This paper focuses on the technical details involved in raw and smoothed data and 

in traditional equipercentile and kernel equating for the nonequivalent groups with anchor test 

(NEAT) design. All of the procedures described in this paper are empirically evaluated in an 

accompanying report (Moses & Holland, 2007). 
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The Five-Step Equating Framework 

The empirical decisions practitioners make to equate tests include a pre-smoothing step 

that estimates true distributions from a set of collected data, an estimation step that calculates the 

probabilities of the test scores used in the equating process, a continuization step that uses the 

discrete scores to determine “in-between” scores, a score equating step, and a standard error 

estimation step. This section discusses these five steps in detail, describing specific applications 

that are relevant to the different equating functions used for the NEAT design. 

Step 1: Presmoothing 

The equating process begins with a decision on how to utilize the raw data that are 

gathered from test administrations. For the NEAT design the data are collected as two samples 

from nonequivalent populations (P and Q) that take different total tests (X or Y) and one internal 

or external anchor (A in P and A in Q). The raw data take the form of two bivariate test score 

distributions (X, A in P and Y, A in Q). The scores of the bivariate distributions are discrete and 

assumed to be integers. The sampling error of the raw data can reduce the precision of the 

equating function but is itself reducible through the use of smoothing methods. Because of the 

potential for smoothing methods to introduce bias while reducing sampling variability, 

discussions of whether to use smoothed or raw data are typically framed in terms of a bias-

variability tradeoff (e.g., Kolen, 1991; Kolen & Brennan, 2004). 

Loglinear models for presmoothing. One useful tool for addressing the bias-variability 

tradeoff in discrete test score distributions is loglinear modeling (Holland & Thayer, 1987, 2000). 

Loglinear modeling has been promoted in test equating as an extremely flexible and variability-

reducing smoothing technique for discrete test score distributions (Kolen, 1991; Livingston, 

1993b; Hanson, 1991; Rosenbaum & Thayer, 1987). The loglinear modeling framework for 

comparing the fits of several nested models makes it possible to select among strong and weak 

degrees of smoothing using structured significance tests (Agresti, 2002; Bishop, Feinberg & 

Holland, 1975; Haberman, 1974). 

For the NEAT design, two loglinear models are used to fit the two bivariate distributions. 

The following model is for the (X, A) distribution in P. The model for the (Y, A) distribution in Q 

is similar: 
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1 1 1 1

log ( ) ( ) ( ) ( ) ( )α β β β
= = = =

= + + +∑ ∑ ∑ ∑
I H G F

i h g f
e j l xi j ah l gf j l

i h g f

p x a x a , (1) 

where j lp  is the joint score probability of the score (xj, al) (score xj on test X and score al on test A 

as taken by population P) and the α  and β ’s are free parameters that are estimated in the model-

fitting process. The fitting of this model produces a smoothed bivariate distribution that preserves 

I moments in the marginal distribution of X, H moments in the marginal distribution of A, and a 

number of cross-moments ( ,  G I F H≤ ≤ ) in the bivariate XA distribution. Many values can be 

used for I, H, G, and F; larger values preserve more features of the raw data in the model than 

smaller values. 

The estimated variance-covariance matrix of population P’s probabilities ( PΣ ) modeled 

with (1) can be used for computing standard errors of kernel equating (von Davier et al., 2004b). 

An efficient root factorization of PΣ  is the so-called “C-matrix,” defined as 

t
p P PΣ = C C , (2) 

where PC  is the JL (for an external anchor) by T (where T = I + H + GF in (1)) matrix and 
t
pC  is 

its transpose. pC  can be efficiently computed as 

-1/2

PNP p
C = D Q . (3) 

The diagonal matrix p
D  has entries jlp  along its main diagonal. PN  is the total sample size in 

P, and Q  is the JL by T orthogonal matrix that comes from the following QR-factorization, 

⎡ ⎤
⎣ ⎦

t
p

D - pp B = QR . (4) 

Q is a JL by T matrix with orthogonal columns, R is a T by T upper triangular matrix, p  and p  

are the column vectors of the jlp ’s and jlp ’s respectively, and B is the matrix of the score 

functions of xj and al from (1) (Holland & Thayer, 1987). A major advantage of the C-matrix is 
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storage efficiency for large bivariate problems. (Note that there are only as many columns in the 

C-matrix as there are parameters in the model.) 

No presmoothing. The equating process can utilize data in their raw form without the 

use of loglinear modeling. The use of raw data and estimates of their sampling variability 

provides an important basis for evaluating the equating functions computed from some possibly 

under-parameterized and biased loglinear models and from other over-parameterized and highly 

variable loglinear models. When raw data are used, the original probabilities are used as 

estimates of the population distribution. The only issue is to estimate a raw data version of the 

C-matrix given in (3). 

To do so, let (1/ )PN= Pp n  denote the vector of sample proportions based on the 

unsmoothed sample frequencies in vector Pn , where Pn  is the JL “column-vectorized” version of 

the original J by L matrix of bivariate frequencies. It is assumed that Pn  has the multinomial 

distribution M(NP, ρ), where NP denotes the total sample size and ρ is the column vector of 

population probabilities (Bishop et al., 1975, p. 469). The covariance of p  can be computed as 

PΣ = (1/ )PN (Dp – ppt), (5) 

where Dp denotes the diagonal matrix with entries jlp  along its main diagonal, and pt denotes the 

transpose of p. In comparison to (3), there is no loglinear presmoothing so that the dimensions of 

pC  will be JL by JL rather than JL by T. Note that there is no reduction in the range of 

applications for the raw C-matrix as compared to the smoothed C-matrix currently used in kernel 

equating. 

pC  is found as follows: Write PΣ  in (5) as 

PΣ  = (1/ )PN  JL( )t

p p
D I - p p D , (6) 

where p
D  is the diagonal matrix with entries jlp  along its main diagonal, p  is the (column) 

vector of the jlp ’s, and IJL is a JL by JL identity matrix. Equation (6) is justified by factoring 



 

5 

out p
D  from the Dp and the ppt in (5). The “inner” matrix in (6), that is, ( )t

JLI - p p , is 

idempotent so that it equals it own square. Thus, (6) can be expressed as 

PΣ  = (1/ )PN JL JL( )( )tt
p pD I - p p I - p p D  = 

t
P PC C ,  (7) 

  where pC  = JL( )
-1/2

PN t

p
D I - p p  = ( )

-1/2

PN t

p
D - pp . (8) 

Similar developments of (5) in (7) and (8) have been given in Bishop et al. (1975, pp. 469–473). 

Step 2: Score Distribution Estimation 

The second step of equating requires an estimation of the distributions of the scores that 

are going to be used in the equating from the raw or smoothed data from Step 1. This estimation 

depends on a “design function” (von Davier et al., 2004b). For the NEAT design and observed 

score equating methods, there are two possibilities for utilizing anchor score information. One is 

an X to Y equating that is based on chaining the single-group links computed for X to A in P and 

for A to Y in Q. For chained equating, the needed score distributions are estimated by obtaining 

marginal score distributions for XP, AP , AQ, and YQ, the probability vectors of which are denoted 

as rP, tP, tQ, and sQ. 

The other possibility is to use the anchor as a stratifying variable to estimate synthetic 

population score distributions on X and Y in P and Q. The synthetic score distributions are then 

used in post-stratification equating, also referred to as frequency estimation equipercentile 

equating (Jarjoura & Kolen, 1985; Kolen & Brennan, 2004). Score probabilities can be estimated 

in the synthetic populations for X and Y as 

1 Ql
PSE wP+(1-w)Q j jl

l Pl

( - w)t
= ,  r = w+ p

t
⎡ ⎤
⎢ ⎥
⎣ ⎦

∑r r  (9) 

1 Pl
PSE wP+(1-w)Q k kl

l Ql

wt= ,  s = ( - w)+ q
t

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∑s s , (10) 

where w  is a value between 0 and 1 that specifies the proportion of P in the synthetic population, 

where the synthetic population is defined as w P+(1- w )Q, Plt  and Qlt  are the marginal 
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probabilities at anchor score l in populations P and Q, and jlp  and klq  are bivariate probabilities 

at scores Xj and Al in population P and at scores Yk and Al in population Q. 

Raw data complications. With raw data that have not been presmoothed, there is a 

potential for some marginal score probabilities to be zero. This creates problems for two aspects 

of equating. For the traditional equipercentile method, more than one score exists with the same 

cumulative probability, and there is no clear basis for assigning the cumulative probability to any 

one score. For the marginal anchor scores that are used in kernel and traditional equipercentile 

post-stratification equating, division-by-zero problems can occur [ Plt  and Qlt  in Equations (9) and 

(10)]. To avoid problems from scores with zero frequencies, many ad hoc rules have been 

proposed (Jarjoura & Kolen, 1986; Kolen & Brennan, 2004; Livingston, 2004). 

The rule proposed in this paper is also ad hoc, but is proposed because it provides a direct 

basis for the estimation of equating errors in Step 5 while controlling for bias in Step 4, 

particularly for the post-stratification method. This rule is to average any marginal frequencies (or 

marginal synthetic probabilities multiplied by the sample size) less than one with the nearest 

lower and higher scores that had frequencies that were one or greater. These averaged frequencies 

and probabilities are then used in the rest of the equating processes. 

For post-stratification, the averaging is done on the marginal anchor scores, and then, to 

preserve the bivariate distribution and make (9) and (10) correctly sum to one, on each of the total 

test score probabilities in the bivariate tables. For example, if P2t  = 0 so that the marginal anchor 

probabilities at scores l = 1, 2, and 3 are averaged, this means that 3
P1 P2 P3t +t +t

 is used for P1t , 

P2t  and P3t , 3
11 12 13p + p + p

 is used as the bivariate probability for 11p , 12p  and 13p , 

3
21 22 23p + p + p

 is used as the bivariate probability for 21p , 22p  and 23p , and so forth for all J. 

Because (9) and (10) rely on p and q vectors with averaged frequencies and the variance-

covariances of p and q (5-8) are computed from the original frequencies, the discussions of (9) 

and (10) to follow in Step 5 and the appendix will notate the p and q that are produced from some 

frequency averaging as p  and q  to distinguish them from the original p and q vectors. Marginal 

probability averaging for the levels of j and k in r and s may also sometimes be necessary because 
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eliminating low frequencies in the column sums of p does not necessarily eliminate low 

frequencies in the row sums of p . 

Step 3: Continuization 

The discrete score distributions of Steps 1 and 2 have to be continuized into continuous 

cumulative density functions (cdfs) with defined inverses. The continuization process is based on 

an assertion of how “in-between” score values are distributed in the discrete distribution. Two 

continuization possibilities treated here are the traditional equipercentile method’s percentile- 

rank method and the kernel method’s kernel density estimation method. There are other 

continuization approaches that are not addressed here (e.g., Wang, 2004). 

Traditional equipercentile continuization. The traditional equipercentile method of 

continuization is based on linearly interpolating between two scores and their cumulative 

percentages. The assumption is that scores and cumulative percentages are uniformly distributed 

between one-unit score intervals so that the cdf (i.e., “percentile rank”; Kolen & Brennan, 2004) 

for any x score, possible or impossible, can be computed by: 

                           F(x; r) = 0  if x ≤ x1 – ½ 

= (x – (x1 – ½ ))r1  if x1 – ½ ≤ x ≤ x1 + ½ , 

                               = 
1

1

j

k
k

r
−

=

∑ + rj (x – (xj – ½)) if xj – ½ ≤ x ≤ xj + ½, for j = 2, . . . J, 

                          = 1 if x ≥ xJ + ½. (11) 

The equipercentile continuization can be distinguished from the kernel continuization in two 

respects. First, the equipercentile’s degree of continuization is independent of the sample data. 

Second, the equipercentile’s continuization is based on the cumulative probabilities of pairs of 

consecutive scores in the score distribution. 

Kernel continuization. The continuization method for kernel equating is kernel density 

estimation for univariate score distributions. In von Davier et al. (2004b, p. 56), a Gaussian kernel 

is used, with a parameter (h) that can be altered so that the resulting cdfs are more or less 

influenced by the Gaussian kernel: 
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ΦhX j jX
j

F (x; )= r (R (x))∑r , (12) 

where 
X j X X

jX
X X

x - a x -(1- a )μ
R (x)=

a h , 
2
X

X 2 2
X X

σa =
σ +h , and Φ  denotes the standard Gaussian cdf. 

The bandwidth parameter (hx) can be set by the practitioner. Extremely large (>10σX) bandwidths 

produce cdfs that retain only the mean and variance of the data, causing the equating function to 

resolve into a linear form. Smaller values of hx produce cdfs that retain more of the data. von 

Davier et al. (2004b) recommend a rule for selecting h based on achieving a continuized cdf that 

closely approximates the discrete data (by minimizing the sum of the squared error) while having 

few modes (by avoiding rapid changes in the derivative of the cdf). One computational method 

that works well for meeting these two criteria in selecting h is known as Brent’s method or 

parabolic interpolation (Press, Teukolsky, Vetterling, & Flannery, 1992). 

Step 4: Equating 

Traditional equipercentile and kernel equating functions are implemented by first 

computing cdf values for scores from one distribution and then finding scores on another 

distribution with cdfs that match those of the first (i.e., the inverse df). The equipercentile and 

kernel versions of the cdf computations were described in Step 3. The equipercentile and kernel 

versions of the inverse cdf computations are described here. 

The traditional equipercentile inverse cdf. To compute an inverse cdf using the traditional 

equipercentile method, the percentile rank of one score on a score distribution, jF(x ; )r , is 

located on another score distribution such that 1/2uG(y + ; )s  is the smallest percentile rank at an 

interval boundary score (i.e., y  +/- 1/2 for score intervals of 1) on s  that is larger than jF(x ; )r . 

The inverse cdf is then computed as 

1/2
1/2

1/2 1/2
j u-1-1

y j j u
u u-1

F(x ; ) - G(y + ; )
e (x )= G (F(x ; ); )= y - +

G(y + ; )- G(y + ; )
r s

r s
s s . (13) 

The kernel inverse cdf. The inverse cdf for the kernel method can be computed using an 

iterative search process, such as Newton’s method. Given a kernel continuized cdf, hX jF (x ; )r , the 
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y  score with a matching cdf value on s  can be found by starting with a 
*

hYG (y ; )s  that is based 

on an initial *y  value that is plausibly close to y je (x ) . Then *y  is updated as 

( )*
hX j hY** *

*
hY

F (x ; ) - G (y ; )
y = y +

G (y ; )
y

∂
∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

r s

s
. When it is noted that both the derivative in the update’s 

denominator and the difference in percentile ranks in (13)’s denominator are probabilities of y 

scores near y je (x ) , the kernel method’s use of Newton for the inverse cdf computation and the 

inverse cdf computation for the traditional equipercentile method can be understood as being 

almost identical. The Newton update is repeatedly calculated until a **y  is found such that 
**

hYG (y ; )s  is acceptably close to hX jF (x ; )r . The result can be expressed as the kernel equating 

function 

( )-1
y j hY hX je (x )= G F (x ; );r s . (14) 

Equating functions. The chained kernel and equipercentile equating functions can be 

expressed as two cdf matchings brought together based on the four marginal distributions: 

-1 -1
Y(CE)e (x)= G (H(H (F(x; ); ); ); )P P Q Qr t t s .  

 (15) 

The post-stratification kernel and equipercentile equating functions are based on matching 

the cdfs from the two synthetic populations:  

-1
Y(PSE)e (x)= G (F(x; ); )(wP+(1-w)Q) (wP+(1-w)Q)r s .  (16) 

Step 5: Standard Error Estimation 

The delta method is frequently used to estimate the extent of sampling variation in the 

equating function (Jarjoura & Kolen, 1985; Liou & Cheng, 1995; Liou et al., 1997; Lord, 1982; 

von Davier et al., 2004b). With the delta method the assumption is made that the X to Y equating 

function is continuously differentiable across X, so that equating variability can be estimated 

using the equating function derivatives and the corresponding estimates of variability in the data. 
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A major difference between how the delta method is treated in this paper and how it was 

developed by Jarjoura and Kolen (1986), Liou and Cheng (1995), Liou et al. (1997), and Lord 

(1982), is that the differentiation and variance-covariance estimation used here are in terms of the 

probabilities at every score level rather than in terms of cumulative probabilities at a limited 

number of score levels. This orientation to score probabilities allows for a very flexible approach 

to equating function and standard error estimation that is straightforward to apply to all major 

equating designs (von Davier et al., 2004b), to smoothed and raw data, to traditional 

equipercentile and kernel equating functions, and to the estimated variability of equated score 

differences. 

The pieces of the delta method standard errors are described below. They include the 

derivative of the equating function with respect to marginal score probabilities (Je, Steps 3 and 4), 

the derivative of the marginal score probabilities with respect to the original bivariate distribution 

(JDF, Steps 1 and 2), and the C-matrices of the two estimated distributions (Step 1). The general 

form of the standard error is given as the root sum of squares of the “SEE-vector,” which is the 

product of the derivative vectors and the C-matrices: 

ySEE (x) = e DFJ J C  (17) 

In (17), 
2
j

j

x= ∑x  denotes the Euclidian length (norm) of vector x. 

Equating function derivatives. Kernel and equipercentile equating functions have the 

general form 
-1

Ye (x; , )= G (F (x; ); )r s r s , so that they can be differentiated with respect to 

marginal score probabilities as 

1Y

j j

e F(x; )=
r G' r

∂ ∂
∂ ∂

r , (18) 

1Y Y

k k

e G(e (x); )= -
s G' s
∂ ∂
∂ ∂

s , (19) 

where 
YG(e (x); )G' =
y

∂
∂

s
 (von Davier et al., 2004b). 
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Derivatives for the equipercentile equating functions. The derivatives of the continuized 

percentile-rank cdf in (11) at score x with respect to each xj’ marginal score probability requires 

that xj be located in the range of X such that xj – ½ ≤ x ≤ xj + ½. Then 

( ; )∂
∂

r

j'

F x
r = 1  j’ < j, 

 = (x – (xj – ½ ))   j’ = j, 

 = 0 j’ > j. (20) 

The expression of y

k

G(e (x); )
s

∂

∂

s
 is similar. The next section of this paper gives a modification of 

(20) when raw and sparse data are used. 

The derivatives of the equated scores with respect to the actual Y scores are: 

y
yu

G(e (x); )
= s

y
∂

∂

s
 for ye (x)  where 1/ 2 1/ 2u y uy e (x) y− < < +  

                              2
yu yu-1s + s

=  for ye (x)  where 1/ 2y ue (x)= y −  (21) 

The averaging of two probabilities (i.e., derivatives) when the traditional equipercentile 

ye (x)  is at a +/- 1/2 score boundary is a pragmatic proposal. It is not strictly correct because the 

delta method is intended for smooth and continuously differentiable functions. The percentile-

rank derivative with respect to score probabilities is not continuous at +/- 1/2 score boundaries; it 

has two derivatives that depend on whether the rate of change in the percentile-rank function is 

approached from the upper or lower score around the score boundary. The precise way of dealing 

with equated scores that are exactly on score boundaries is to treat the derivative and resulting 

standard error estimate as undefined. The actual situations where equated scores are at score 

boundaries are rare except at the tails of score distributions, where standard error estimates are 

known to be poor for other reasons, namely sparse data (Jarjoura & Kolen, 1985; Liou & Cheng, 

1995). Simulation results described in Moses and Holland (2007) suggest that the use of an 

average of the two possible derivatives for equated scores at +/- 1/2 score boundaries has 

minimally adverse effects on standard error estimates. The averaging of derivatives in (21) is 
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completely avoided in kernel equating functions because kernel cdfs are smooth and continuously 

differentiable across the entire score range. 

Raw and sparse data. Equations (20) and (21) must be adjusted when frequency-averaging 

is done for sparse, marginal probabilities and traditional equipercentile equating. When 

frequency-averaging is used, the equating function is not based directly on the marginal 

probabilities. When the percentile-rank function, ( ; )rF x , is computed based on averaged 

marginal probabilities, it can be expressed as ( ; )rF x , where r  is the vector of original marginal 

probabilities where some are averaged. For example, when the probabilities at scores 2x  and 6x  

are zero, they are averaged with the probabilities at scores 1x  and 3x  and 5x  and 7x , respectively. 

Then the percentile rank at score 6 can be expressed as 

1 2 3 4 5 6( ; ) (5 (5 1/ 2))6F x = 5 r r r r r r= + + + + + − −r , 

1 2 3 5 6 7 5 6 7
43 (5 (5 1/ 2))

3 3 3
r +r +r r +r +r r +r +r

 r⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , 

                    ( )5 6 7
1 2 3 4 1 5 (5 1/ 2)

3
r +r +r

r +r +r  r ⎛ ⎞= + + + − −⎜ ⎟⎝ ⎠  

                    ( )5 6 7
1 2 3 4 6 (5 1/ 2)

3
r +r +r

r +r +r  r ⎛ ⎞= + + − −⎜ ⎟⎝ ⎠  

                    ( )5 6 7
1 2 3 4 7 6( 1/ 2)

3
r +r +r

r +r +r  r x x⎛ ⎞= + + − −⎜ ⎟⎝ ⎠  

                     ( )5 6 7
1 2 3 4 6 5( 1/ 2)

3
r +r +r

r +r +r  r x x⎛ ⎞= + + − −⎜ ⎟⎝ ⎠ . 

Therefore, 
( ; )∂
∂

r

j'

F x
r  = 1 j’ < j, 

= (x – (xj – 1/2))(1/b) f or any j’ for which j'r is averaged with 

jr , 

= 0  j’ > j + b - 1. 

 (22) 
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In (22), xj is the lowest of the scores with averaged probabilities at x, and b is the number of score 

values with probabilities that are averaged together. Note that, when several scores have 

probabilities that are averaged together, b gets large, marginal probability distributions become 

uniform, equating functions approach the identity function, and the standard errors go to zero. 

Derivatives for the kernel equating functions. With respect to marginal score probabilities 

and scores, the derivatives of the continuized kernel cdf in (12) are given in von Davier et al. 

(2004b) as 

( ; ) ( ; )( ( ; )) ( ; )jX jX
k

F x F xR x M x
r x

∂ ∂= Φ −
∂ ∂

r rr r  (23) 

      and 
( ; ) 1( ( ; ))∂

=
∂ ∑r rj jX

j X X

F x r R x
x a h

φ  (24) 

where 
(1 )

( ; )
− − −

=r X j X X
jX

X X

x a x a
R x

a h
μ

, 

        
2

21( ; ) ( )(1 ) (1 )
2

−⎛ ⎞
= − − + −⎜ ⎟⎝ ⎠

r j X
jX X X X j

X

x
M x x a a x

μ
μ

σ , 

and φ  denotes the standard Gaussian density function. 

Equating function derivative vectors. When the vectors of score-level equating functions 

are computed, the equating function derivative vectors (i.e., Jacobians) can be merged into the eJ  

that is used in (17). For post-stratification, the two Jacobians for each of the two synthetic score 

distributions are merged: 

( ),Y Y

wP+(1-w)Q wP+(1-w)Q

e e,
r s

⎛ ⎞∂ ∂
= =⎜ ⎟∂ ∂⎝ ⎠

eY(PSE) rwP+(1-w)Q swP+(1-w)QJ J J . (25) 

For chained equating, the Jacobians based on the four marginal distributions are merged: 

( ) ( ) , ( ( )Y
a a

ex (e (x)) x e x )
a

⎛ ∂ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠∂eY(CE) ea eYJ J J ,  (26) 
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       where ( )( ,a ae (x) e (x)
x)= ,

⎛ ⎞∂ ∂
=⎜ ⎟∂ ∂⎝ ⎠ea rP tP

P P

J J J
r t ,  

           ( )( ( ) ,Y a Y a
a

e (e (x)) e (e (x))
e x ) ,

⎛ ⎞∂ ∂
= =⎜ ⎟∂ ∂⎝ ⎠

eY tQ sQ
Q Q

J J J
t s , 

    and 
Q aY

a
Q Y

H (e (x); )/ ae (e (x))=
a G (e (x); )/ y

∂ ∂∂
∂ ∂ ∂

Q

Q

t
s . 

Design function derivatives. The design function for chained equating involves summing 

up the bivariate probabilities to create two marginal probability distributions, one for the test and 

another for the anchor scores. For error estimation, the test and anchor entries of the C-matrix are 

summed in the same way as the bivariate probabilities. For a formal description of the design 

function derivatives for chained equating, refer to the discussion of the single-group design in the 

appendix. 

The design function for post-stratification is nonlinear and can be written in terms of the 

two bivariate and four marginal probabilities used in (9) and (10): 

( ) 1

Pl

11- )( ) (1 )( )
b

Ql Ql
Pl

Pl Pl

t t
= w+( w w t

t t
−⎛ ⎞∂∂ ∂ ⎡ ⎤= − −⎜ ⎟⎣ ⎦∂ ∂ ∂ ⎝ ⎠

l
J l

l l l

p I p 1
p p p

t
J

r r
 (27) 

( ) 1

Pl

1
bQl= w t

−∂∂ ∂ ⎛ ⎞⎡ ⎤= ⎢ ⎥⎝ ⎠⎣ ⎦∂ ∂ ∂
l

l
l l l

p q 1
p p p

t
J

s s
 (28) 

( )( )1

Ql

1(1
bPlw) t

−∂∂ ∂ ⎡ ⎤= = − ⎣ ⎦∂ ∂ ∂
l

l
l l l

q p 1
q q q

t
K

r r
 (29) 

( ) 1

Ql

11 ( ) ( )
b

Pl Pl
Ql

l Ql Ql

t t
w+ w w t

t t
−⎛ ⎞∂∂ ∂ ⎡ ⎤= = − −⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ∂ ⎝ ⎠

l
K l

l l l

q I q 1
q q q

t
K

s s
, (30) 

where the lp  and lq  terms denote computations involving the averaged form of the bivariate 

probabilities (Step 2), and the b’s denote the number of score levels on the marginal anchor 

distributions in P or Q that were averaged to avoid divisions-by-zero to compute (9) and (10). For 

smoothed data, lp  and lq  equal lp  and lq  and all b’s equal 1. For raw and sparse data, some 
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anchor scores’ probabilities are averaged so that lp  and lq  are not always equal to lp  and lq  and 

some b’s can be greater than 1. 

C. The final C in (17) is given as a stacking of the P and Q C-matrices, and assumes that 

the two samples’ probability distributions are estimated independently: 

 
⎛ ⎞
⎜ ⎟⎝ ⎠

P

Q

C      0
C =

 0      C  . (31) 

Computations for raw data. For raw data, the SEE-vector uses a square C-matrix and can 

become so large that it exceeds storage capacity. Additional multiplications that have a e DF(J J )C  

orientation can result in SEE formulas that avoid the C-matrix in its large form. These are 

described in more detail in the appendix, with the main results presented here. 

For chained equating, the variance of the raw equating function is given as the sum of the 

variances of the equating function derivatives in (25): 

 SEE2(x) = 
2 2 2

a Y a[ ( ( ))] SEE (x) SEE (e (x))Y
a

e e x
a

∂
+

∂ , (32) 

where 
2
aSEE ( )x  = (1/NP) j l

2

r t
j,l

(J J - ( )) jlpμ μ+ +∑ r tJ P J P , 

    
2
Y aSEE (e ( ))x  = (1/NQ) k l

2

s t
k,l

(J J - ( )) klqμ μ+ +∑ s tJ Q J Q , ( ( ))Y
a

e e x
a

∂
∂  was defined in (26), and 

the μ’s denote averages of particular derivative vectors. 

For post-stratification equating, the variance of the raw equating function is given as the 

variances of the JeJDF products from (25) and (27-30): 

SEE2(x) = (1/NP)
2

jl A

jl

(A - μ )
jl

p∑ P  + (1/NQ) 
2

kl B

kl

(B - μ )
kl

q∑ Q , (33) 

where  Ajl = ( )jrl
Pl

1w J (
b

wμ μ μ− +
r r sP J P | l J P | l J Q | l( ) + ) , 

Bkl = ( )ksl l
Ql

1w J (1 )( + )
b

wμ μ μ− −
rs sJ P | lQ J Q | J Q | l( ) + , 
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w lP  = (1 ) ( (1 ) ) / /Pl Pl Pl Tl PlQl Qlw w t /t wt w t t t t+ − = + − = ,  

and lw Q  = (1 ) ( / ) /Pl TlQl Qlw w t t t t− + = . 

SEEDs. Equating functions are often selected based on comparisons with other equating 

functions (e.g., 1y 2y
e (x) - e (x) ), such as curvilinear and linear differences, chained and post-

stratification differences, post-stratification differences when w is varied, and differences between 

linear methods (von Davier & Kong, 2005). von Davier et al. (2004b) showed that through noting 

( )1 2e e∂ − = −e1 e2J J , the SEE-vector formula in (17) can be generalized into a SEED-vector for 

the standard error of equating function differences: 

( )ySEED (x) = e1 DF1 e2 DF2J J - J J C . (34) 

Two types of SEEDs are important in the NEAT design. One is for evaluating the 

significance of differences between curvilinear and linear kernel equating functions for a given 

design function (either chained or post-stratification). In the kernel framework, curvilinear and 

linear equating functions can be computed simply by selecting smaller and larger continuization 

bandwidths (h’s). Because the design function for the curvilinear and linear comparison is the 

same, the SEED can be expressed as 

( )ySEED (x) = e1 e2 DFJ - J J C .  (35) 

Another type of SEED is useful for assessing the significance of differences between 

chained and post-stratification equated scores. For this type of comparison, there are separate 

design functions and derivative vectors, so (34) is used. 

Raw SEEDs. The raw SEED analogues of (34) are discussed in detail in the appendix. The 

final results are as follows. For the curvilinear-linear comparison in chained kernel equating, 

SEED2(x) = 
2 2
a Y a(1/ )SEED ( ) (1/ )SEED (e ( ))P QN x N x+ , (36) 
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where 
2
aSEED ( )x  = 

j l j l

2
r1 t1 r2 t2

j,l

( ( )) ( ( ))
(J J (J J)( - + ) - - )Y a Y a

jl

e1 e1 x e2 e2 x
p

a a
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂
μ μ

∂ ∂
+∑

r1 r2 t1 t2
e1 e2 e1 e2( J  - J )P ( J  - J )P
a a a a

and 

2
Y aSEED (e ( ))x  = k k l l

2

s1 s2 t1 t2
k,l

(J - J J - J - - ) klqμ μ+∑ s1 s2 t1 t2(J -J )Q (J -J )Q . 

For the curvilinear-linear comparison in post-stratification kernel equating, 

SEED2(x) = (1/NP)
2

(e1-e2)jl A(e1-e2)
jl

(A - μ ) jlp∑ P  + (1/NQ)
2

(e1-e2)kl B(e1-e2)
kl

(B - μ ) klq∑ Q , (37) 

where A(e1-e2)jl = ( )j jr1 r2l l l l
Pl

1w J J w(
b

μ μ μ− − +
r1 r2 r1 r2 s1 s2P (J -J )P | (J -J )P | (J -J )Q | ( ) + ) , 

and B(e1-e2)kl = ( )k ks1 s2 ll l l
Ql

1w J J + (1 )( + )
b

wμ μ μ− − −
r1 r2s1 s2 s1 s2(J -J )P | Q (J -J )Q | (J -J )Q | ( ) . 

The raw SEED for assessing differences between chained and post-stratification equating 

functions is computed as 

             2 2
y y ySEED ( ) SEED ( ) SEED ( )x x x= +P Q  

where j l 2

2 2
y r 1, t 1, jl,2 A

jl

( ( ))1SEED ( ) ( (J J - - ) A )Y a
jl

P

p
e1 e1 xx

N a
∂

= + μ μ − +
∂∑ μ

r1 t1 PP P P J P J P P , (38) 

k l 2

2 2
y s 1, t 1, kl,2 A

kl

1SEED ( ) (J J - - B ) kl
Q

qx
N

= + μ μ − +∑ s1 t1 QQ Q Q J Q J Q P μ , 1e  is the chained equating 

function, and 2e  is the post-stratification equating function. 

Discussion 

This paper describes how raw data and traditional equipercentile equating functions can be 

incorporated within von Davier et al.'s (2004b) kernel equating framework. Previous studies of 

theoretical standard errors of equating (Jarjoura & Kolen, 1985; Liou & Cheng, 1995; Liou et al., 

1997; Lord, 1982) addressed many issues discussed in this paper, but in a somewhat disjointed 

manner. This paper’s framework provides some additional structure to allow these previous issues 
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to be more easily related. It also provides a more general standard error of equating difference for 

post-stratification and chained equated scores. 

This paper reveals many issues of equating methodology that deserve further study. More 

general forms of the kernel and linear interpolation continuization methods could be explored, 

such as the utilization of a uniform kernel that is not limited to discrete score intervals and the 

utilization of the suggested frequency averaging rule and linear interpolation over specifically 

defined score ranges. A revisiting of previously proposed rules for dealing with scores of zero 

frequencies in raw post-stratification equating (Jarjoura & Kolen, 1985; Hanson, 1991; Hanson et 

al., 1994; Kolen & Brennan, 2004; Livingston, 2004) and the implications of these rules on the 

accuracies of equating functions and variability is also warranted. The empirical evaluation of the 

described procedures and their relationships is another important issue that is addressed in an 

accompanying research report (Moses & Holland, 2007). 
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Appendix 

Deriving the Standard Errors of Equating for Raw Data 

This appendix gives the derivations for efficient raw SEE and SEED computations that 

avoid directly forming JL by JL and KL by KL C-matrices. First a basic result is given for the raw 

C-matrix and the product of anything multiplied by the raw C-matrix. Then the derivations of 

e DF(J J )C  are given for the single-group design (X-to-A in P). The single-group results are then 

easily applied to chained equating. Then the e DF(J J )C  is described for post-stratification. Finally, 

the SEED equations are given. 

The Basic Result 

In getting to the SEE-vector for raw data, we first get the row vector JeJDF and then 

premultiply it into C of the form in (8). Let v denote a row vector of the appropriate dimension 

for the multiplication to make sense, then 

v C = v (1/ ( ))N t

p
D - pp  = (1/ ( ))N t

p
vD - v pp . (A1) 

Since p is a column vector, vp is the mean of the elements of v using the probabilities in p, so 

denote this by μvP. Furthermore, p
vD  is a row vector with coordinates vj jp . Thus, vC is the 

row vector with elements 

(1/ )( ) jjN v p− μ vP . (A2) 

Finally, the squared length of vC will be the sum of squares of the elements in (A2) or 1/N times 

the variance of the elements of the vector v, that is, 

||v C||2 = 2(1/ )N σvP . (A3) 

As this paper will show, the SEEs for the various designs when there is no presmoothing will 

always involve one or more quantities of the form (A3). 
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The Single-Group (SG) Design (X-to-A in P) 

Following von Davier et al. (2004b), the array of interest is P = (1/N)n, the two-way table 

of bivariate cell proportions. Furthermore, P is regarded as vectorized into a column vector 

denoted as p. If P is J by L, then p is JL by 1. It is now p that is assumed to have the multinomial 

distribution. 

Continuing to follow von Davier et al., the vector of raw score proportions for the two 

tests, X and A, that is, (rt, tt)t, is computed as, 

(rt, tt)t = 
⎛ ⎞
⎜ ⎟⎝ ⎠
r
t  = 

⎛ ⎞
⎜ ⎟⎝ ⎠

M
O p, (A4) 

where M and N are defined by, 

M = (IJ, . . . IJ), (A5) 

 O = 

t
J

t
J

t
J

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 ... 0
0 1 ... 0
: : : :
0 0 ... 1

, (A6) 

and where IJ denotes a J by J identity matrix and 
t
J1  denotes a row J-vector of all 1’s. M is J by 

JL and O has L rows and is L by JL. Hence, by definition, 

JDF = 
⎛ ⎞
⎜ ⎟⎝ ⎠

M
O , (A7) 

a J + L by JL matrix. 

The C-matrix for this case is exactly as before, 

C = 
t(1/ )( )N −pD p p . 

But p is now a JL-vector, partitioned as, 
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p = 
1

L

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

p
:

p
, 

where, pl, a column J-vector, is the lth column of P. 

To compute Je(x) JDF = (Jr, Jt) JDF, observe that 

   (Jr, Jt) JDF = (Jr, Jt)
⎛ ⎞
⎜ ⎟⎝ ⎠

M
O  = Jr M + Jt O. 

Then, 

Jr M = Jr (IJ, . . . , IJ) = (Jr, . . . , Jr), (A8) 

and 

Jt O = Jt 

t
J

t
J

t
J

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1 0 ... 0
0 1 ... 0
: : : :
0 0 ... 1

 = ( 1t
J t

J1 , 2t
J t

J1 , . . . , Lt
J t

J1 ) (A9) 

Hence, the (j, l)th element of Jr M + Jt O is 

jr
J  + lt

J . (A10) 

Thus, applying (A2), the (j, l)th element of the SEE-vector for the SG design is 

j lr t ( + )(1/ )(J J )+ jlN p− μ
r tJ J P , (A11) 

where, 

       j lr t
j,l

( ) (J J ) jlp+μ = +∑r tJ J P , 

so that the SEE for the SG design is given by the square root of 

SEE2(x) = (1/N) ( + )
2σ

r tJ J P . (A12) 
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The NEAT Design—Chain Equating 

Chain equating (CE) uses the results of two embedded single-group designs. In the NEAT 

design there are two bivariate arrays of probabilities, P and Q, where P is J by L and Q is K by L. 

Again, it is assumed that they have been vectorized into p and q, respectively, and again the 

sample and population proportions are mixed. In CE, the quantities that are used are the four 

probability vectors rP, tP, tQ, sQ, defined in von Davier et al (2004b). In both this and the next 

section, j is used for the coordinate subscript for r, k for the subscript for s and l for the subscript 

for t, that is, rj, sk and tl. 

For CE, the equating function, eY(x; rP, tP, tQ, sQ) is the composition of two simpler 

functions, i.e., 

eY(x; rP, tP, tQ, sQ) = eY(ea(x; rP, tP); tQ, sQ) 

where eA(x; rP, tP) is the single-group link from X to A and eY(a; tQ, sQ) is the single-group link 

from A to Y. Then, as shown in von Davier et al. (p. 84), the SEE2(x) for CE is the sum of two 

parts corresponding to the two SG links, that is, 

SEE2(x) = 
2 2 2

a Y[ ( ( ))] SEE ( ) SEE ( ( ))Y
a a

e e x x e x
a

∂
+

∂ . (A13) 

Now apply (A12): 

2
aSEE ( )x  = (1/NP) j l

2

r t
j,l

(J J - ( )) jlpμ μ+ +∑ r tJ P J P  =(1/NP) j l

2

r t
j,l

(J J - ) jlpμ+∑ r t(J +J )P

 (A14) 

and 

     
2
YSEE ( ( ))ae x  = (1/NQ) k l

2

s t
k,l

(J J - ( )) klqμ μ+ +∑ s tJ Q J Q . = 

(1/NQ) k l

2

s t
k,l

(J J - ) klqμ+∑ s t(J +J )Q .  (A15) 

In (A15), the Jacobians and their mean values need to be evaluated at the converted x-scores via 

ea(x; rP, tP). The SEE for CE in the NEAT design is the square root of the quantity in (A13). 



 

26 

The NEAT Design—Post-Stratification Equating 

The use of the data from the NEAT design for post-stratification equating assumes that the 

arrays, P and Q, have been vectorized into p and q. The C-matrix for the vector of unsmoothed 

and unaveraged proportions (pt, qt)t is given by 

C = 
⎛ ⎞
⎜ ⎟
⎝ ⎠

P

Q

C 0

0 C
, (A16) 

where 

          CP = 
t(1/ )( )PN −pD p p  

and 

         CQ = 
t(1/ )( )QN −qD q q . 

Furthermore, the Jacobian of the design function for post-stratification equating in the 

NEAT design is given by 

JDF = 

∂ ∂

∂ ∂

∂ ∂

∂ ∂

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

r r
p q

s s
p q

, (A17) 

and, as before, 

              Je = (Jr, Js). 

Hence, 

       Je JDF = (A, B), (A18) 

where  

A = Jr

∂

∂

r
p

 + Js

∂

∂

s
p

, (A19) 
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B = Jr

∂

∂

r
q

 + Js

∂

∂

s
q

. (A20) 

Using (A16) and (A18),  

SEE-vector = (A, B)
⎛ ⎞
⎜ ⎟
⎝ ⎠

P

Q

C 0

0 C
 = (A CP, B CQ). (A21) 

From (A21), the squared length of the SEE-vector in this case will be ||ACP||2 + ||BCQ||2, and from 

(A3) each of these components will be 1/N times the variance of the components of A or B. A 

notation can be used that is like the notation used earlier: 

     EE2(x) = (1/NP) 2
 σA P  + (1/NQ)

2σB Q , (A22) 

where 2
 σA P  denotes the variance of the elements of A with respect to the bivariate distribution P, 

and 
2σB Q  denotes the variance of the elements of B with respect to the bivariate distribution Q. 

Hence, all that remains is to work out what the elements of A and B are. This is more 

complicated than the previous cases because of the form of the Jacobian of the design function for 

post-stratification equating in the NEAT design. 

To proceed further it may be useful to get the dimensions of the arrays in (A18) to (A20) 

clear. A is 1 by JL, and B is 1 by KL, so they are the same shapes as pt and qt, respectively. More 

importantly, A and B may be partitioned L blocks in the same was that pt and qt are, that is 

A = (A1, . . . , Al, . . . , AL), 

B = (B1, . . . , Bl, . . . , BL). 

Next, the expressions for the elements of the partitions for A and B are obtained. These are: 

Al = Jr
l

∂

∂

r
p  + Js

l

∂

∂

s
p =

l l

l l l l

∂ ∂

∂ ∂

∂ ∂
+

∂ ∂r s
r s
p p

p pJ J
p p  
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                            = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
p p

pJ J
p , (A23) 

Bl = Jr
l

∂

∂

r
q  + Js

l

∂

∂

s
q =

l l

l l l l

∂ ∂

∂ ∂

∂ ∂
+

∂ ∂r s
r s
q q

q qJ J
q q  

                            = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
q q

qJ J
q . (A24) 

In (A23) and (A24), the bivariate probability vectors with averaged probabilities ( p  and q ) are 

distinguished from the original bivariate probability vectors (p and q). This distinction is 

important, because the raw post-stratification equating function, synthetic marginal probabilities 

(r and s), and algebraic development of Je JDF that follows are based on p  and q , while the final 

computation of e DF(J J )C  utilizes a C that is based on p and q. Additional multiplications of 

JeJDF are needed for derivatives that are in terms of the original bivariate probabilities. They are 

of the form ( )1
Pl Pl

1 1.....
 b b+

⎛ ⎞∂
= ∂ + + =⎜ ⎟∂ ⎝ ⎠

l
l l

l

p p p
p , where Plb  is the number of anchor score levels 

with marginal probabilities that are averaged together. 

von Davier et al. (2004b, p. 76) provide formulas for the matrices, 
l

∂

∂

r
p , and so on, that 

can be exploited for the Je JDF of post-stratification. These are: 

l

∂

∂

r
p  = 

1
J l Jlw - (1- )( / )[( ) ] t

Pl PlQlw t t t −
PI p 1 , (A25) 

l

∂

∂

s
p  = 1

l J[( ) ] t
Qlw t − q 1 , (A26) 

l

∂

∂

r
q  = 

1
l K(1- )[( ) ] t

Plw t − p 1 , (A27) 
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l

∂

∂

s
q  = 

1
K l Klw - ( / )[( ) ] t

Pl Ql Qlw t t t −
QI q 1 . (A28) 

In (A25) to (A28), the quantities w lP  and lw Q  are defined as 

w lP  = (1 ) / ( (1 ) ) / /Pl Pl Pl Tl PlQl Qlw w t t wt w t t t t+ − = + − = , (A29) 

     and lw Q  = (1 ) ( / ) /Pl TlQl Qlw w t t t t− + = .. (A30) 

Next, 

       Jr
l

∂

∂

r
p  = 

1
l Jlw - (1- )( )[( ) ] t

Pl PlQlw t /t t −
r rPJ J p 1 , 

       Js
l

∂

∂

s
p  = 

1
l J[( ) ] t

Qlw t −
sJ q 1 , 

and 

       Jr
l

∂

∂

r
q  = 

1
l K(1- )[( ) ] t

Plw t −
rJ p 1 , 

       Js
l

∂

∂

s
q  = 

1
l Klw - ( )[( ) ] t

Pl Ql Qlw t /t t −
s sQJ J q 1 . 

Quantities of the form 
1

l( )Plt −
rJ p  occur in each of the above expressions so it is useful to 

have a separate notation for them and in fact they are all conditional means. They are defined as 

rJ P | lμ  = jr
j

J ( )jl Plp /t∑  = 
1

l( )Plt −
rJ p , (A31) 

sJ Q | lμ  = ks
k

J ( / )kl Qlq t∑  = 
1

l( )Qlt −
sJ q . (A32) 

Because { /jl Plp t } is the conditional probability distribution of X given A in P , it is clear that 

lrJ P | μ  is the conditional mean of Jr given A over P . A similar interpretation holds for lsJ Q | μ , thus:  
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Jr
l

∂

∂

r
p  = Jl lw - (1- )( ) t

PlQlw t /t μ
rrP J P | J 1 , (A33) 

Js
l

∂

∂

s
p  = Jl

twμ
sJ Q | 1 , (A34) 

Jr
l

∂

∂

r
q  = Kl(1- ) tw μ

rJ P | 1 , (A35) 

Js
l

∂

∂

s
q  = Kl lw - ( ) t

Pl Qlw t /t μ
ssQ J Q | J 1 . (A36) 

Hence, Al and Bl in (A23) and (A24) can be examined in more detail: 

Al = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
p p

pJ J
p = ( )J Jl l l

Pl

1w - (1- )( )
b

t t
PlQlw t /t wμ μ+

r srP J P | J Q | J 1 1 ,  (A37) 

and 

B    l = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
q q

qJ J
q = ( )K Kl l l

Ql

1(1- ) w - ( )
b

t t
Pl Qlw w t /tμ μ+

r ssJ P | Q J Q | 1 J 1 . (A38) 

Equations (A29) and (A30) give the following relationships, 

(1 ) wPlQlw t /t w− = −lP , and l l l(t /t ) w (1 )= − −P Q Qw w . (A39) 

Equations (A37) and (A38) are simplified using (A39) as follows: 

Al = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
p p

pJ J
p  = ( )J Jl l l l

Pl

1w (w  )
b

t tw wμ μ− − +
r srP P J P | J Q | J 1 1  (A40) 

and 
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Bl = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
q q

qJ J
q = ( )K Kl l l l

Ql

1(1 ) + w (w (1 ))
b

t tw wμ μ
⎛ ⎞

− − − − ⎜ ⎟⎝ ⎠r ssJ P | Q Q J Q | 1 J 1 . (A41) 

Hence, 

Al = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
p p

pJ J
p  = ( )J Jl l l l

Pl

1w ( ) (
b

t twμ μ μ− + +
r r srP J P | J P | J Q | J 1 )1 , (A42) 

and 

Bl = l

l l l

∂ ∂

∂ ∂

⎛ ⎞ ∂
+⎜ ⎟ ∂⎝ ⎠r s

r s
q q

qJ J
q = ( )K Kl l l

Ql

1w ( ) (1 )( + )
b

t twμ μ μ− + −
rs ss J P | lQ J Q | J Q | J 1 1 .  (A43) 

All that remains is to give the individual coordinates of the vector partitions, Al and Bl. These are: 

Ajl = ( )jrl l l l
Pl

1w J (
b

wμ μ μ− +
r r sP J P | J P | J Q | ( ) + ) , (A44) 

and Bkl = ( )ks ll l l
Ql

1w J + (1 )( + )
b

wμ μ μ− −
rs sJ P | Q J Q | J Q | ( ) . (A45) 

Finally, we use (A44) and (A45) to obtain the two variances in (A22) to get the SEE for 

the post-stratification method of equating in the NEAT design. 

The NEAT Design—Standard Errors of Equating Differences (SEEDs) 

Curvilinear-Linear SEEDs 

For kernel equating functions, curvilinear and linear equating functions for a given method 

(either post-stratification or chained) can be computed by varying the continuization bandwidths 

(h’s). The derivative of the (e1 - e2) difference is simply the difference between the equating 

functions’ derivative vectors, ( )1 2e e∂ − = e1 e2J - J , so that, 

ySEED ( )x = =e1 e2 DF e1-e2 DF(J - J )J C J J C  (A46) 

(von Davier et al., 2004b, p. 80). 
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The implication of (A46) is that raw curvilinear-linear SEEDs can be computed by 

utilizing all of the raw SEE results with the substitution of e1 e2J - J  for eJ . 

The SEED analogues of (A1) and (A2) are: 

( )y
1SEED - Vector ( )x
N

= − t
e1 e2 DF e1 e2 DFp

(J - J )J D (J - J )J p p , and   (A47) 

( )1 2

2

y ( )
1SEED ( )

e e DFJ J J j
j

x p
N −= −∑ μe1j e2j DF(J - J )J .   (A48) 

Equation (A48) makes it clear that the raw SEED is the standard deviation of the 

difference between equating functions’ derivatives for a given design and data set.  

To compute the raw SEEDs for kernel post-stratification, simply use r1 r2J - J  and s1 s2J - J  

in place of rJ  and sJ  in (A22), (A31-A45). The curvilinear-linear post-stratification SEED 

elements are:  

A(e1-e2)jl = ( )j jr1 r2l l l l
Pl

1w J J (
b

wμ μ μ− − +
r1 r2 r1 r2 s1 s2P (J -J )P | (J -J )P | (J -J )Q | ( ) + ) ,   (A49) 

     and B(e1-e2)kl = ( )k ks1 s2 ll l l
Ql

1w J J + (1 )( + )
b

wμ μ μ− − −
r1 r2s1 s2 s1 s2(J -J )P | Q (J -J )Q | (J -J )Q | ( ) .   (A50) 

The raw SEED for chained kernel requires a little more than the simple substitution of 

1 2e eJ J−  for eJ . There are two ( ( ))Y
a

e e x
a

∂
∂ ’s that are needed, and these must be incorporated into 

specific parts of the 1 2e eJ J−  computations: 

SEED2(x) = 
2 2
a Y(1/ )SEED ( ) (1/ )SEED ( ( ))P Q aN x N e x+ ,   (A51) 

where 
2
aSEED ( )x  = 

j l j l

2
r1 t1 r2 t2

j,l

( ( )) ( ( ))
(J J (J J)( - + ) - - )Y a Y a

jl

e1 e1 x e2 e2 x
p

a a
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂
μ μ

∂ ∂
+∑

r1 r2 t1 t2
e1 e2 e1 e2( J  - J )P ( J  - J )P
a a a a

  (A52) 

2
YSEED ( ( ))ae x  = k k l l

2

s1 s2 t1 t2
k,l

(J - J J - J - - ) klqμ μ+∑ s1 s2 t1 t2(J -J )Q (J -J )Q .    (A53) 
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Chained-Post-Stratification SEEDs 

The SEED vector can also be expressed more generally as  

ySEED (x) = e1 DF1 e2 DF2(J J - J J )C , (A54) 

Equation (A54) can be used to estimate the variability of the difference between equating 

functions based on different design functions, such as two post-stratification equating functions 

where w is varied, or between chained (e1) and post-stratification (e2) equating functions (von 

Davier et al., 2004b p. 81). 

Based on the definition of C in (3), the raw SEED in (A54) can be computed as follows: 

22
ySEED (x) = +e1P DF1P e2P DF2P P e1Q DF1Q e2Q DF2Q Q(J J - J J )C (J J - J J )C . (A55) 

From (A55), there are two major parts to the SEED: 

2 2
y y ySEED ( ) SEED ( ) SEED ( )x x x= +P Q , (A56) 

which are now separately simplified. 

From (A1), 

2
2
y

1SEED ( ) ( ) ( )
P

x
N

= − t

P e1P DF1P e2P DF2P e1P DF1P e2P DF2Pp
D ppJ J - J J J J - J J . (A57) 

2
2
y

1SEED ( )
Q

x
N

= − t

Q e1Q DF1Q e2Q DF2Q e1Q DF1Q e2Q DF2Qq
D qq(J J - J J ) (J J - J J ) . (A58) 

Factoring out all t
p ’s and t

q ’s and noting that products of row and column vectors are 

sums, 

( )22
y

1SEED ( )
P

x
N

=P e1P DF1P e2P DF2P e1P DF1P e2P DF2P p pJ J - J J - (J J - J J ) . (A59) 

( )22
y

1SEED ( )
Q

x
N

=Q e1Q DF1Q e2Q DF2Q e1Q DF1Q e2Q DF2Q q qJ J - J J - (J J - J J ) . (A60) 

From (A2), the elements multiplied by p  and q  vectors are means: 
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( )22
y

1SEED ( ) ( )
e1 DF 1 e 2 DF 2J J J J

P

x
N

= − −μ μ
P P P PP e1P DF1P e2P DF2P pJ J - J J  .(A61) 

( )2
2
y

1SEED ( ) ( )
e1 DF 1 e 2 DF 2J J J J

Q

x
N

= − −μ μ
Q Q Q QQ e1Q DF1Q e2Q DF2Q qJ J - J J . (A62) 

From (25), (26), (A13), (A14), (A15), (A44), and (A45), 

2

2
2
y r1, t1, 2 A

( ( ))1SEED ( ) (J J - - ) AY a

P

e1 e1 x
x

N a
∂⎛ ⎞= + μ μ − +⎜ ⎟⎝ ⎠∂

μ
r1 t1 PP P P J P J P P p . (A63) 

( )2

2
2
y s1, t1, 2 A

1SEED ( ) J J - - B
Q

x
N

= + μ μ − + μ
s1 t1 QQ Q Q J Q J Q P q . (A64) 

Then the elements of (A56) can be computed as 

j l 2

2 2
y r 1, t 1, jl,2 A

jl

( ( ))1SEED ( ) ( (J J - - ) A )Y a
jl

P

p
e1 e1 xx

N a
∂

= + μ μ − +
∂∑ μ

r1 t1 PP P P J P J P P . (A65) 

( )k l 2

2
2
y s 1, t 1, kl,2 A

kl

1SEED ( ) J J - - B kl
Q

qx
N

= + μ μ − +∑ μ
s1 t1 QQ Q Q J Q J Q P . (A66) 




